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Abstract

This paper compares the performance of recursive
state estimation techniques for tracking the physical
location of a radioactive source based on radiation
measurements obtained from a series of detectors at
�xed locations. Speci�cally, the �rst order, iterated,
and a second order extended Kalman �lter perfor-
mance is compared to nonlinear least squares esti-
mation. The results of this study indicate that least
squares estimation signi�cantly outperforms the ex-
tended Kalman �lter implementations in this appli-
cation due to the nature of the model nonlinearities.

1. Introduction

The position tracking system consists of a single ra-
dioactive source of known strength and initial posi-
tion within a room containing four radiation detec-
tors. The radiation detectors are located at �xed po-
sitions on each wall of the room and provide discrete
count rate measurements at a one second sample pe-
riod. The count rate for a given sensor represents the
total number of gamma-energy photons detected by
that sensor over the one second sample period. We
wish to track the position of the source in real time
as it is moved within the room based on the radiation
detector measurements. The estimate of the source
location is based on a nonlinear model for each sensor
that relates the detector count rate to location.

2. Dynamic Model

The state of the system, s = [x y z B]T , consists of
the x{y{z coordinates of the position of the source
within the room and the background radiation, B,
which also changes. Since the background radiation
does not vary signi�cantly, the source is normally sta-
tionary, and there is no prescribed trajectory or re-
lationship between the displacement in each of the
coordinate directions when it is moved, we choose to
model the state dynamics as a random walk process
in which ! is an independent, normally distributed
disturbance.

_s = 0 +! (1)

The system measurements consist of the count
rates, M = [M1 M2 M3 M4]

T , from the four ra-
diation detectors in which the subscript indicates the
detector. The count rate measured by the ith detec-
tor can be determined from the source strength, de-
tector properties, view factor, and the current state
of the system from the following relationship [1]

Mi =

i S �i Fi + B

1 + �i 
i S �i Fi
+ �i; i = 1; : : : ; 4 (2)

in which S is the source strength in counts per second,
�i = 0:1 is the detector e�ciency, �i = 3:3 nsec is the
detector dead time, Fi is the product of all correction
factors such as absorption and backscattering which is
assumed to be unity for each detector in this work, B
is the number of counts per second which constitutes
the background radiation, and � is an independent,
Poisson distributed measurement noise vector.
The view factor for each detector, 
i, is the ratio of

the number of particles which actually enter the de-
tector to the total number of particles emitted by the
source. Assuming a point source located at coordi-
nates (u; v; w) relative to the detector and a detector
of widthW and height H, the quantity 
i is modeled
as the solid angle subtended by the detector [2]
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in which H = 0:253 m and W = 0:914 m for
the detectors used in this study. The expression in
Eq. 3 is based on a detector-centered coordinate sys-
tem. Since there are four detectors in this study, it



is not possible to choose a coordinate system that
is centered at each detector. Therefore, we choose
a room-centered coordinate system to describe the
source location and determine a coordinate transfor-
mation from room-centered to detector-centered co-
ordinates for each detector. The required transfor-
mation, which converts room-centered coordinates,
(x; y; z), to detector-centered coordinates, (ui; vi; wi),
for the ith detector, is linear and can be expressed as
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in which Tx;i, Ty;i, and Tz;i are the translations along
the room centered x, y, and z directions, respectively,
and Ai is the rotation angle around the v-axis for the
ith detector. The source strength and background
radiation are invariant under this transformation.

3. Extended Kalman Filters

Extended Kalman �lters compute a state estimate
at each sampling period by the application of linear
Kalman �ltering on a linearized model of the nonlin-
ear system around the current state estimate. For
the tracking system model presented in Section 2,
only the sensor model in Eq. 2 is nonlinear. A lin-
ear approximation of this sensor model for use in the
extended Kalman �lter can be developed using the
�rst order terms of a Taylor series expansion

~M(s+ d) =M(s) + Gd (5)

in which M(s) is the sensor function evaluated at
the state s and G is the Jacobian matrix of the sensor
model function evaluated at the state s.
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3.1. First Order Filter

The �rst order �lter uses the approximate sensor
model in Eq. 5, linearized about the current state es-
timate, to construct a time-varying Kalman �lter at

each sampling period [3]. The estimate of the state at
sample time k given sensor measurements up to time
k, ŝkjk, is computed as follows

ŝkjk = ŝkjk�1 + dk (7)

dk = Lk

�
Dk �Mkjk�1

�
(8)

ŝ0j0 = [xo yo zo Bo]
T (9)

in whichDk is the sensor measurement vector at sam-
ple time k,Mkjk�1 is the sensor model in Eqs. 2{ 4
evaluated at the state estimate skjk�1, and s0j0 is the
known initial state. The time-varying linear Kalman
�lter gain at sample time k, Lk, is determined by

Lk = P kjk�1G
T
kjk�1

�
Gkjk�1P kjk�1G

T
kjk�1 +R

��1
(10)

in which Gkjk�1 is the Jacobian matrix in Eq. 6 eval-
uated at the state estimate skjk�1 and P kjk�1 is the
estimated state covariance matrix. The estimated co-
variance of the state is updated at each sample time
due to the contribution of the discrete measurement.

P kjk =
�
I �LkGkjk�1

�
P kjk�1 (11)

The estimated state and state covariance matrix are
updated between sampling times based on the linear
state dynamic model presented in Eq. 1.

ŝk+1jk = ŝkjk ; P k+1jk = P kjk +Q (12)

The tuning parameters for the �lter are the state
and measurement noise covariance matrices. Since
the radiation detector measurement noise is Poisson
distributed, the measurement covariance used for the
�lter is a diagonal matrix in which each diagonal entry
is determined from the model predicted count rate at
the current estimate of the state scaled by the squared
dispersion. The state disturbance covariance matrix
is a diagonal matrix with the variance of the back-
ground radiation scaled by a constant value.

R = diag(
2Mkjk�1); Q = diag([1; 1; 1; �]) (13)

Figures 1 and 2 present the x-direction and y-
direction tracking errors for the �rst order extended
Kalman �lter applied to a test data set. The val-
ues 
 = 10 and � = 0:01 were used to obtain these
results. Larger values of 
 result in poorer track-
ing performance while smaller values result in exces-
sive variation of the estimated position. For values of

 < 7, the extended Kalman �lter becomes unstable.
Larger values of � result in an unreasonable increase
in the estimated background radiation. As shown in
these �gures, the �lter is unable to adequately track
the source and places it outside of the room for a sig-
ni�cant period during the test. The application of
position constraints, by clipping state estimates that
are outside of the room at each sampling period, does
prevent physically unrealistic estimates but does not
improve the prediction error signi�cantly.
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Figure 1: First order �lter x-direction tracking error.
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Figure 2: First order �lter y-direction tracking error.

3.2. Iterative First Order Filter

Iterative extended Kalman �lters attempt to reduce
the estimation error by improving the approximation
to the nonlinear system that is used in the determi-
nation of the �ltered state. These schemes linearize
the system model about an updated state estimate at
each iteration. An iterative scheme used to compen-
sate for nonlinearity in the measurement function is
to repeat the calculation of ŝkjk in Eq. 7 [4]. Letting
ŝkjk(i) represent the ith iterate of the �ltered state
estimate, the next iteration is determined as follows

ŝkjk(i+ 1) = ŝkjk�1 + dk(i) (14)

dk(i) = Lk(i)
�
Dk �Mkjk(i)�

Gkjk(i)
�
ŝkjk�1 � ŝkjk(i)

��
(15)

ŝkjk(0) = ŝkjk�1 (16)

in which the �lter gain, Lk(i), and the Jacobian of
the sensor model function, Gkjk(i), are recomputed
at each iteration based on the current iterate of the
�ltered state. The iteration is repeated until there
is no signi�cant di�erence between the iterated �l-
tered states. The estimated state covariance is then
updated in the same manner as Eq. 11 using the con-
verged �lter gain and sensor model function Jacobian.
The estimated state and covariance are propagated
between sampling times in the same manner as the
�rst order �lter as shown in Eq. 12.

The iterative �rst order �lter x-direction and y-
direction tracking errors are shown in Figures 3 and 4.
Values of 
 = 10 and � = 0:01 were used to ob-
tain these results with a maximum of ten iterations
allowed to get within a 0.1 m tolerance for the 2-
norm of the di�erence between successive iterates.
An average of 9 iterations were required for the un-
constrained �lter and 8 iterations for the constrained
�lter. In both cases, however, most of the estimates
either converged within two to three iterations or did
not converge within the iteration limit. Increasing the
iteration limit does not result in either convergence
or improved estimates. Successive linearization of the
sensor model function does not signi�cantly improve
the tracking error with almost an order of magnitude
increase in computational e�ort. The incorporation
of constraints also decreases the average x-direction
tracking performance for the iterated �lter.
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Figure 3: Iterative �lter x-direction tracking error.
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Figure 4: Iterative �lter y-direction tracking error.

3.3. Second Order Filter

The second order �lter utilizes a second order approx-
imation to the sensor model about the current state
estimate. The �lter applied in this work is that pre-
sented in [5] and referred to as a modi�ed Gaussian

second order �lter in [4].

dk = Lk

�
Dk �Mkjk�1 ��k

�
(17)

Lk = P kjk�1G
T
k

�
GkP kjk�1G

T
k +R+�k

��1
(18)



The terms �k in the state estimate update and �k

in the �lter gain update result from the contribution
of the second order terms in the approximation [5]
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in whichGi
k is the Hessian matrix of the sensor model

of the ith state evaluated at the current state esti-
mate.
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Since the state dynamics are linear, the state estimate
and state covariance matrix are updated in the same
manner as the �rst order �lter using Eq. 12.
Figures 5 and 6 present the x-direction and y-

direction tracking errors for the second order �lter
with 
 = 10 and � = 0:01. There is a modest im-
provement in the tracking error using the second or-
der �lter, however, the computational requirements
increase by a factor of four over the �rst order �lter.
Note that the application of position constraints leads
to a signi�cant decrease in the average x-direction
tracking performance similar to the iterative �lter.

4. Nonlinear Least Squares Estimator

A least squares estimator that explicitly considers
sensor noise and position constraints is now consid-
ered [6]. At each sample time, the optimal estimated
change in the state, dk, is determined from the solu-
tion to the following nonlinear optimization problem

d�k = argmin
dk

 
4X

i=1

Wm
i

�
Di �Mi

�
ŝkjk�1 + dk

��2
+

4X
j=1

Wd
j d2j (k)

!
(23)

Subject to:

Lj � ŝj(k j k � 1) + dj(k) � Uj ; j = 1; : : : ; 4

in which Wm
i are the model prediction error weights,

Wd
j are the weights for the change from the pre-

vious state estimate, Lj are the minimum position
constraints, and Uj are the maximum position con-
straints. We select Wm

i as the diagonal entries of the
matrix Q�1 and Wd

j as the diagonal entries of the

matrix R�1 as de�ned in Eq. 13.
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Figure 5: Second order �lter x-direction tracking error.
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Figure 6: Second order �lter y-direction tracking error.

The optimization problem posed in Eq. 23 is solved
using a feasible sequential quadratic programming ap-
proach [7] in which the solution was generally ob-
tained within the one second sampling period of the
sensors. If it is necessary to terminate the estima-
tor after one sample period, the current sub-optimal
iterate of this SQP algorithm will satisfy the posi-
tion constraints. Note that the �rst and second order
extended Kalman �lters also generally produced an
estimate within the one second sample period while
the iterative �lter generally did not.
Figures 7 and 8 compare the x-direction and y-

direction tracking error for the nonlinear least squares
estimator and the constrained �rst order �lter. We
choose the �rst order �lter for comparison since it
generated the least noisy position estimates.

5. Results

Table 1 presents the 2-norm of the tracking errors for
each estimation algorithm. The least squares estima-
tor outperforms the extended Kalman �ltering tech-
niques by a signi�cant margin for the x and y direc-
tions, which are the most important for source track-
ing. The height of the source, the z-direction, was not
varied during the test. However, all four sensors were
at the same height which makes it di�cult to resolve
the source height from the sensor measurements. For
this reason, the z-direction tracking errors were not
presented graphically. Figure 9 presents the change in
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Figure 7: Constrained x-direction tracking error.
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Figure 8: Constrained y-direction tracking error.

the background radiation for each of the constrained
estimators. In addition to a signi�cant position track-
ing error, the extended Kalman �lters also estimated
a much larger increase in the background radiation
during the test period. Decreasing the value of � in
Eq. 13 to reduce the estimated background radiation
change either had little positive e�ect or a negative ef-
fect on the tracking errors. This study used the same
dispersion and state covariance tuning parameters for
each estimator. Although slight improvements with
the extended Kalman �lters are possible with tuning,
the results presented here are representative of the ob-
tainable tracking error performance for this system.

Estimator x (m) y (m) z (m) B (ct/sec)

First Order 216.9 69.1 25.3 1:42� 104

First Order(c) 210.4 81.1 25.0 1:46� 104

Iterative 120.7 74.3 80.1 1:18� 104

Iterative(c) 223.3 80.9 52.0 1:33� 104

Second Order 105.9 59.1 58.0 9:60� 103

Second Order(c) 177.2 62.4 41.5 9:90� 103

Least Squares 17.8 23.8 19.5 1:53� 103

Table 1: Tracking error 2{norm. (c) = constrained.

6. Conclusions

The results of this study clearly show that extended
Kalman �ltering techniques are not appropriate for

this problem. The relationship for the solid angle
subtended by the detector for a point source in Eq. 3
is not analytic at the origin. The discontinuity of the
�rst derivative makes any truncated Taylor series a
poor approximation to the nonlinear sensor model.
The application of state constraints must be accom-
plished either by clipping the estimates or interac-
tively adjusting the state covariance matrix. Both of
these methods can lead to poor tracking performance.
Finally, extended Kalman �ltering techniques assume
Gaussian distributions for the Taylor series model.
Although Poisson distributed process can be approx-
imated by a Gaussian distribution for large means,
this approximation becomes less accurate as the count
rate for a sensor decreases.
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Figure 9: Estimated background radiation change.
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